Home
Furniture
Dining Room
Living Room
Bedroom
Kitchen & Bathroom
Garden
Special Ranges
Decoration
Wallpaper
Fabrics
Carpets
Curtains
Ready Made Items
Paints
Tiles
Stained Glass
Accessories
Paintings & Prints
Tapestries
Tableware
Ornaments
Door Furniture
Lighting
Jewellery
Greeting Cards
Stencils
Research
Books
Antiques
Architecture
Biographies
Pictorial Histories
Interiors
Movement Histories
Chronology
Museums
Places of Interest
Accommodation
Tours
Societies
Services
Property
Press
About the Arts & Crafts Home
Ordering
Currency Converter
Metric Converter

 

 

WE BUY AND SELL INDUSTRIAL ANTIQUES

and we will soon be listing a selection of factory, warehouse and industrial accessories, collected from throughout over Europe.

Many of the vintage industrial units can be adapted for use in today's homes, adapated into coffee tables, decorative usage, mirrors and storage.

 

A HISTORY OF INDUSTRIAL ANTIQUES

Industrial archaeology, like other branches of archaeology, is the study of the past, but with a focus on industry or industrial heritage. Industrial archaeology concerns itself with the physical remains of industry. It is born out of the need to record and preserve the remains of industrialisation before they disappear. The study is a multi-disciplinary one encompassing engineering, architecture, economics and social aspects of manufacturing/extractive industry as well as the transport and utilities sector. However, not all aspects of a particular industry would fall under the definition of industrial archaeology.
The term was coined in the 1950s in Birmingham by Michael Rix although its meaning and interpretation has changed with use and time. Palmer and Neaverson (Industrial Archaeology Principles and Practice, 1998) defined industrial archaeology as: "the systematic study of structures and artifacts as a means of enlarging our understanding of the industrial past."


As an interest initially practiced largely by amateurs, it has in the past been looked down upon by professional archaeologists. However, with growing awareness of the usefulness of archaeological study of the recent past, elements of what were formerly 'industrial archaeology' have been welcomed into the broader framework of mainstream archaeology. Since the timeframe of study is relatively recent, industrial archaeology is well placed to develop on the basis of more reliable and absolute recording of its past, present and future than other areas of archaeological interest.


Those interested may make field trips to abandoned or mostly forgotten industrial sites, or may examine annual reports, engineering and building drawings and documentation, government documents and surveys, and other historical materials to try to determine and document what sorts of activities went on, and why, at a particular site, and construct a history or timeline that shows how a site developed and changed (and potentially when and why it was abandoned) over time.


One example of such a site is the Saugus Iron Works National Historic Site, site of the first integrated iron works in North America. Since the site dates to the 1600s, developing a clear understanding of what was done, and how it was carried out, as well as the facility arrangement, was a painstaking and difficult process.


One of the first areas in the UK to be the subject of a systematic study of 'industrial archaeology' was the Ironbridge Gorge in Shropshire, UK. This landscape developed from the seventeenth century as one of the first industrial landscapes, and by the 18th century had a range of extractive industries as well as extensive iron making, ceramic manufacturing (including porcelain and decorative tiles) and a series of early railways. The significance of the Ironbridge Gorge was recognised in 1986 with its designation as a World Heritage Site, and work by the Ironbridge Archaeology unit over recent years has revealed a great deal about both technological and social developments during the post-medieval period.
Following the pioneering lead of Ironbridge, other areas have been subject to often innovative studies. Recent work in Manchester, UK, by the university field unit have led to new approaches. Sheffield, UK, is one of the most intently studied locality of industrial archaeology in the world. Over the last decade a concerted effort by ARCUS and the University of Sheffield has led to Sheffield's 18th and 19th century history as a steel producer being revealed. This has been enabled by a massive series of redevelopments allowing access to the archaeology.


Academic programs


Many university archaeology departments include the industrial period in their degree courses. Dedicated industrial archaeology and industrial heritage courses are usually at post-graduate level, and are offered by two universities in North America and in many countries in Europe, while the Michigan Technological University also has a doctorate program. In the UK, the University of Birmingham grants a masters degree in Industrial Heritage Management.


A typical Masters programme in Industrial History or Archaeology may draw on historical archaeology, anthropology of industry, history of technology, and historical preservation fields of study. A doctoral program in Industrial Heritage and Archeology may expand to include work in American or European civilization, architectural history, material culture, and heritage management.


Organizations


There are national industrial archaeology societies in many countries: the Society for Industrial Archaeology ((SIA) in North America, the Association for Industrial Archaeology (AIA) in Great Britain, CILAC in France, and the Italian AIPAI are among the largest. They bring together people interested in researching, recording, preserving and presenting industrial heritage. Industrial architecture, mineral extraction, heritage-based tourism, power technology, adaptive re-use of industrial buildings and transport history are just some of the themes that could be investigated by society members.
They may also be involved in advising on historic preservation matters, or advising government units on revision or demolition of significant sites or buildings.


The Industrial Revolution


The Industrial Revolution was the major technological, socioeconomic and cultural change in late 18th and early 19th century that began in Britain and spread throughout the world. During that time, an economy based on manual labour was replaced by one dominated by industry and the manufacture of machinery. It began with the mechanisation of the textile industries and the development of iron-making techniques, and trade expansion was enabled by the introduction of canals, improved roads and then railways. The introduction of steam power (fuelled primarily by coal) and powered machinery (mainly in textile manufacturing) underpinned the dramatic increases in production capacity. The development of all-metal machine tools in the first two decades of the 19th century facilitated the manufacture of more production machines for manufacturing in other industries.


The period of time covered by the Industrial Revolution varies with different historians. Eric Hobsbawm held that it 'broke out' in the 1780s and wasn't fully felt until the 1830s or 1840s, while T.S. Ashton held that it occurred roughly between 1760 and 1830 (in effect the reigns of George III, The Regency, and George IV)


The effects spread throughout Western Europe and North America during the 19th century, eventually affecting most of the world. The impact of this change on society was enormous and is often compared to the Neolithic revolution, when mankind developed agriculture and gave up its nomadic lifestyle.
The first Industrial Revolution merged into the Second Industrial Revolution around 1850, when technological and economic progress gained momentum with the development of steam-powered ships and railways, and later in the nineteenth century with the internal combustion engine and electrical power generation. At the turn of the century, innovator Henry Ford, father of the assembly line, stated, "There is but one rule for the industrialist, and that is: Make the highest quality goods possible at the lowest cost possible, paying the highest wages possible."
It has been argued that GDP per capita was much more stable and progressed at a much slower rate until the industrial revolution and the emergence of the modern capitalist economy, and that it has since increased rapidly in capitalist countries.


The idea and the name


The term 'Industrial Revolution' applied to technological change was common in the 1830s. Louis-Auguste Blanqui in 1837 spoke of la révolution industrielle. Friedrich Engels in The Condition of the Working Class in England in 1844 spoke of "an industrial revolution, a revolution which at the same time changed the whole of civil society".


The radical nature of the process had been noted before that, in his book Keywords: A Vocabulary of Culture and Society Raymond Williams states in the entry for Industry: The idea of a new social order based on major industrial change was clear in Southey and Owen, between 1811 and 1818, and was implicit as early as Blake in the early 1790s and Wordsworth at the turn of the century.
Credit for popularising the term may be given to Arnold Toynbee, whose lectures given in 1881 gave a detailed account of the process.


Causes


The causes of the Industrial Revolution were complex and remained a topic for debate, with some historians seeing the Revolution as an outgrowth of social and institutional changes brought by the end of feudalism in Britain after the English Civil War in the 17th century. As national border controls became more effective, the spread of disease was lessened, therefore preventing the epidemics common in previous times. The percentage of children who lived past infancy rose significantly, leading to a larger workforce. The Enclosure movement and the British Agricultural Revolution made food production more efficient and less labour-intensive, encouraging the surplus population who could no longer find employment in agriculture into cottage industry, for example weaving, and in the longer term into the cities and the newly-developed factories. The colonial expansion of the 17th century with the accompanying development of international trade, creation of financial markets and accumulation of capital are also cited as factors, as is the scientific revolution of the 17th century.


Technological innovation protected by patents (by the Statute of Monopolies 1623) was, of course, at the heart of it and the key enabling technology was the invention and improvement of the steam engine.
The presence of a large domestic market should also be considered an important catalyst of the Industrial Revolution, particularly explaining why it occurred in Britain. In other nations, such as France, markets were split up by local regions, which often imposed tolls and tariffs on goods traded amongst them.


Causes for occurrence in Europe


One question of active interest to historians is why the Industrial Revolution started in 18th century Europe and not other times like in Ancient Greece, which already had developed a primitive steam engine, and other parts of the world in the 18th century, particularly China and India.


Numerous factors have been suggested, including ecology, government, and culture. Benjamin Elman argues that China was in a high level equilibrium trap in which the non-industrial methods were efficient enough to prevent use of industrial methods with high costs of capital. Kenneth Pomeranz, in the Great Divergence, argues that Europe and China were remarkably similar in 1700, and that the crucial differences which created the Industrial Revolution in Europe were sources of coal near manufacturing centres, and raw materials such as food and wood from the New World, which allowed Europe to expand economically in a way that China could not.


However, modern estimates of per capita income in Western Europe in the late 18th century are of roughly 1,500 dollars in purchasing power parity (and England had a per capita income of nearly 2,000 dollars) whereas China, by comparison, had only 450 dollars. Also, the average interest rate was about 5% in England and over 30% in China, which illustrates how capital was much more abundant in England; capital that was available for investment.


Some historians credit the different belief systems in China and Europe with dictating where the revolution occurred. The religion and beliefs of Europe were largely products of Christianity, Socrates, Plato, and Aristotle. Conversely, Chinese society was founded on men like Confucius, Mencius, Han Feizi (Legalism), Lao Tzu (Taoism), and Buddha (Buddhism). The key difference between these belief systems was that those from Europe focused on the individual, while Chinese beliefs centered around relationships between people. The family unit was more important than the individual for the large majority of Chinese history, and this may have played a role in why the industrial revolution took much longer to occur in China. There was the additional difference as to whether people looked backwards to a reputedly glorious past for answers to their questions or looked hopefully to the future. Furthermore, Western European peoples had experienced the Renaissance and Reformation; other parts of the world had not had a similar intellectual breakout, a condition that holds true even into the 21st century.
In India, the noted historian Rajni Palme Dutt has been quoted as saying, "The capital to finance the Industrial Revolution in India instead went into financing the Industrial Revolution in England." In direct contrast to China, India was split up into many different kingdoms all fighting for supremacy, with the three major ones being the Marathas, Sikhs and the Mughals. In addition, the economy was highly dependent on two sectors--agriculture of subsistence and cotton, and technical innovation was non-existent. The vast amounts of wealth were stored away in palace treasuries, and as such, were easily moved to England.


The debate about the start of the Industrial Revolution also concerns the massive lead that Britain had over other countries. Some have stressed the importance of natural or financial resources that Britain received from its many overseas colonies or that profits from the British slave trade between Africa and the Caribbean helped fuel industrial investment. It has been pointed out however that slavery provided only 5% of the British national income during the years of the Industrial Revolution.
Alternatively, the greater liberalisation of trade from a large merchant base may have allowed Britain to produce and utilise emerging scientific and technological developments more effectively than countries with stronger monarchies, particularly China and Russia. Britain emerged from the Napoleonic Wars as the only European nation not ravaged by financial plunder and economic collapse, and possessing the only merchant fleet of any useful size (European merchant fleets having been destroyed during the war by the Royal Navy). Britain's extensive exporting cottage industries also ensured markets were already available for many early forms of manufactured goods. The nature of conflict in the period resulted in most British warfare being conducted overseas, reducing the devastating effects of territorial conquest that affected much of Europe. This was further aided by Britain's geographical position- an island separated from the rest of mainland Europe.


Another theory is that Britain was able to succeed in the Industrial Revolution due to the availability of key resources it possessed. It had a dense population for its small geographical size. Enclosure of common land and the related Agricultural Revolution made a supply of this labour readily available. There was also a local coincidence of natural resources in the North of England, the English Midlands, South Wales and the Scottish Lowlands. Local supplies of coal, iron, lead, copper, tin, limestone and water power, resulted in excellent conditions for the development and expansion of industry.
The stable political situation in Britain from around 1688, and British society's greater receptiveness to change (when compared with other European countries) can also be said to be factors favouring the Industrial Revolution.


Protestant work ethic


Another theory is that the British advance was due to the presence of an entrepreneurial class which believed in progress, technology and hard work. The existence of this class is often linked to the Protestant work ethic (see Max Weber) and the particular status of dissenting Protestant sects, such as the Quakers, Baptists and Presbyterians that had flourished with the English Civil War. Reinforcement of confidence in the rule of law, which followed establishment of the prototype of constitutional monarchy in Britain in the Glorious Revolution of 1688, and the emergence of a stable financial market there based on the management of the national debt by the Bank of England, contributed to the capacity for, and interest in, private financial investment in industrial ventures.


Dissenters found themselves barred or discouraged from almost all public offices, as well as education at England's only two Universities at the time, Oxford and Cambridge, when the restoration of the monarchy took place and membership in the official Anglican church became mandatory due to the Test Act. They thereupon became active in banking, manufacturing and education. The Unitarians, in particular, were very involved in education, by running Dissenting Academies, where, in contrast to the Universities of Oxford and Cambridge, and schools such as Eton and Harrow, much attention was given to mathematics and the sciences--areas of scholarship vital to the development of manufacturing technologies.
Historians sometimes consider this social factor to be extremely important, along with the nature of the national economies involved. While members of these sects were excluded from certain circles of the government, they were considered fellow Protestants, to a limited extent, by many in the middle class, such as traditional financiers or other businessmen. Given this relative tolerance and the supply of capital, the natural outlet for the more enterprising members of these sects would be to seek new opportunities in the technologies created in the wake of the Scientific revolution of the 17th century.


Lunar Society


The work ethic argument has, on the whole, tended to neglect the fact that several inventors and entrepreneurs were rational free thinkers or "Philosophers" typical of a certain class of British intellectuals in the late 18th century, and were by no means normal church goers or members of religious sects. Examples of these free thinkers were the Lunar Society of Birmingham which flourished from 1765 to 1809. Its members were exceptional in that they were among the very few who were conscious that an industrial revolution was then taking place in Britain. They actively worked as a group to encourage it, not least by investing in it and conducting scientific experiments which led to innovative products.
Innovations


The invention of the steam engine was one of the most important innovations of the industrial revolution. This was made possible by earlier improvements in iron smelting and metal working based on the use of coke rather than charcoal. Earlier in the 18th century the textile industry had harnessed water power to drive improved spinning machines and looms. These textile mills became the model for the organisation of human labour in factories.


Besides the innovation of machinery in factories, the assembly line greatly improved efficiency too. With a series of men trained to do a single task on a product, then having it moved along to the next worker, the number of finished goods also rose significantly.


Transmission of innovation


Knowledge of new innovation was spread by several means. Workers who were trained in the technique might move to another employer, or might be poached. A common method was for someone to make a study tour, gathering information where he could. During the whole of the Industrial Revolution and for the century before, all European countries and America engaged in study-touring; some nations, like Sweden and France, even trained civil servants or technicians to undertake it as a matter of state policy. In other countries, notably Britain and America, this practice was carried out by individual manufacturers anxious to improve their own methods. Study tours were common then, as now, as was the keeping of travel diaries. Records made by industrialists and technicians of the period are an incomparable source of information about their methods.


Another means for the spread of innovation was by the network of informal philosophical societies like the Lunar Society of Birmingham, in which members met to discuss science and often its application to manufacturing. Some of these societies published volumes of proceedings and transactions, and the London-based Society for the encouragement of Arts, Manufactures and Commerce or, more commonly, Society of Arts published an illustrated volume of new inventions, as well as papers about them in its annual Transactions.


There were publications describing technology. Encyclopedias such as Harris's Lexicon technicum (1704) and Dr Abraham Rees's Cyclopaedia (1802-1819) contain much of value. Rees's Cyclopaedia contains an enormous amount of information about the science and technology of the first half of the Industrial Revolution, very well illustrated by fine engravings. Foreign printed sources such as the Descriptions des Arts et Métiers and Diderot's Encyclopédie explained foreign methods with fine engraved plates.
Periodical publications about manufacturing and technology began to appear in the last decade of the 18th century, and a number regularly included notice of the latest patents. Foreign periodicals, such as the Annales des Mines, published accounts of travels made by French engineers who observed British methods on study tours.


Industry


Mining


Coal mining in Britain, particularly in South Wales is of great age. Before the steam engine, pits were often shallow bell pits following a seam of coal along the surface and being abandoned as the coal was extracted. In other cases, if the geology was favourable, the coal was mined by means of an adit driven into the side of a hill. Shaft mining was done in some areas, but the limiting factor was the problem of removing water. It could be done by hauling buckets of water up the shaft or to a sough, a tunnel driven into a hill to drain a mine. In either case, the water had to be discharged into a stream or ditch at level where it could flow away by gravity. The introduction of the steam engine greatly facilitated the removal of water and enabled shafts to be made deeper, enabling more mineral to be extracted. These were developments that had begun before the industrial revolution, but the adoption of James Watt's more efficient steam engine with its separate condenser from the 1770s reduced the fuel costs of engines, making mines more profitable particularly in areas (such as Cornwall), where coal does not occur.


Metallurgy


The major change in the metal industries during the era of the Industrial revolution was the replacement of organic fuels based on wood with fossil fuel based on coal. Much of this happened somewhat before the industrial revolution, based on innovations by Sir Clement Clerke and others from 1678, using coal reverberatory furnaces known as cupolas. These operated by the flames, which contained carbon monoxide, playing on the ore and reducing the oxide to metal. This has the advantage that impurities (such as sulfur) in the coal do not migrate into the metal. This technology was applied to lead from 1678 and to copper from 1687. It was also applied to iron foundry work in the 1690s, but in this case the reverberatory furnace was known as an air furnace. The foundry cupola is a different (and later) innovation.


This was followed by the first Abraham Darby, who made great strides using coke to fuel his blast furnaces at Coalbrookdale (1709). However the coke pig iron he made was largely only used for the production of cast iron goods such as pots and kettles. In this he had an advantage over his rivals in that his pots, cast by his patented process, were thinner and hence cheaper than those of his rivals. Coke pig iron was hardly used to produce bar iron in forges until the mid 1750s when his son Abraham Darby II built Horsehay and Ketley furnaces (not far from Coalbrookdale). By this time coke pig iron was cheaper than charcoal pig iron.


Throughout this period, bar iron for smiths to forge into consumer goods was still made in finery forges, as it long had been. However, new processes were adopted in the ensuing years. The first is referred to today as potting and stamping, but this was superseded by Henry Cort's puddling process. From 1785, perhaps because the improved version of potting and stamping was about to come out of patent, a great expansion in the output of the British iron industry began. The new processes did not depend on the use of charcoal at all, and were therefore not limited by the speed at which trees grow.
Up to that time, British iron manufacturers had used considerable amounts of imported iron to supplement native supplies. This came principally from Sweden from the mid 17th century and later also from Russia from the end of the 1720s. However, from 1785, imports decreased, leading to Britain becoming an exporter of bar iron as well as manufactured wrought iron consumer goods.
As a result of these developments, the reliance on overseas supplies was diminished. The use of iron and steel in the development of the railways became possible, and (later) improvements in machine tools further boosted the industrial growth of Britain. Following the building of the Iron Bridge in 1778 by Abraham Darby III, iron also became a major structural material.


An improvement was made in the production of steel, which was an expensive commodity and used only where iron would not do, such as for the cutting edge of tools and for springs. Benjamin Huntsman developed his crucible steel technique in the 1740s. The raw material for this was blister steel, made by the cementation process, whose raw material was largely imported Swedish iron.


Chemicals


The large scale production of chemicals was an important development during the Industrial Revolution. The first of these was the production of sulfuric acid by the lead chamber process invented by the Englishman John Roebuck (James Watts first partner) in 1746. He was able to greatly increase the scale of the manufacture by replacing the relatively expensive glass vessels formerly used with larger, less expensive chambers made of riveted sheets of lead. Instead of a few pounds at a time, he was able to make a hundred pounds or so at a time in each of the chambers.


The production of an alkali on a large scale became an important goal as well, and a Frenchman, Nicolas Leblanc, succeeded in 1791 in introducing a method for the production of sodium carbonate. The Leblanc process was done by reacting sulfuric acid to sodium chloride to give sodium sulfate and hydrochloric acid. The sodium sulfate was heated with limestone (calcium carbonate) and coal to give a mixture of sodium carbonate and calcium sulfide. Addition of it to water separated the soluble sodium carbonate from the calcium sulfide. The process produced a large amount of pollution (the hydrochloric acid was initially vented to the air, and calcium sulfide was a useless waste product) but proved economical over the previous method of deriving it from wood ashes, barilla, or kelp.


These two chemicals were very important in that they enabled the introduction of a host of other inventions, replacing many small-scale operations with more cost-effective and controllable processes. Sodium carbonate saw many uses in the glass, textile, soap, and paper industries. Early uses for sulfuric acid included pickling (removing rust) iron and steel, and as a bleach for cloth.


The development of bleaching powder (calcium hypochlorite) by Scottish chemist Charles Tennant in about 1800, based on the discoveries of French chemist Claude Louis Berthollet, revolutionized the bleaching processes in the textile industry by dramatically reducing the time required (from months to days) for the traditional process then in use, which required repeated exposure to the sun in bleach fields after soaking the textiles with alkali or sour milk. Tennant's factory at St. Rollox, North Glasgow became the largest chemical plant in the world at that time.


Steam Power


The development of the stationary steam engine was an essential early element of the Industrial Revolution, however it should be remembered that for most of the period of the Industrial Revolution the majority of industries still relied on wind and water power as well as horse and man-power for driving small machines.


The industrial use of steam power started with Thomas Savery in 1698. He constructed and patented in London the first engine, which he called the "Miner's Friend" as he intended it to pump water from mines. This machine used steam at 8 to 10 atmospheres and didn't use a piston and cylinder but applied the steam pressure directly on to the surface of water in a cylinder to force it along an outlet pipe. It also used condensed steam to produce a partial vacuum to suck water into the cylinder. It generated about one horsepower (hp). It was used as a low-lift water pump in a few mines and a number of water works, but was not a success, being limited in the height it could raise water and was prone to boiler explosions.


The first successful machine was the atmospheric engine, a low performance steam engine invented by Thomas Newcomen in 1712. Newcomen apparently conceived his machine quite independently of Savery. His engines used a piston and cylinder, and operated with steam just above atmospheric pressure which was used to produce a partial vacuum in the cylinder when condensed by jets of cold water. The vacuum sucked a piston into the cylinder which moved under pressure from the atmosphere. The engine produced a succession of power strokes which could work a pump, but could not drive a rotating wheel. They were successfully put to use, for pumping out mines in England with the engine on the surface working a pump at the bottom of the mine by a long connecting rod. These were large machines, requiring a lot of capital to build, but produced about 5 hp. They were inefficient but when located where coal was cheap at pit heads they were usefully employed in pumping water from mines. They opened up a great expansion in coal mining by allowing mines to go deeper. Despite being fuel hungry, Newcomen engines continued to be used in the coalfields until the early decades of the nineteenth century as they were reliable and easy to maintain.


By 1729, when Newcomen died, his engines had spread to France, Germany, Austria, Hungary and Sweden. A total of 110 are known to have been built by 1733 when the patent expired of which 14 were abroad. According to Rolt and Allen, p 145, (see below) a grand total of 1454 engines had been built by 1800.


Its working was fundamentally unchanged until James Watt succeeded in 1769 in making his Watt steam engine which incorporated a series of improvements, especially the separate steam condenser chamber. This improved engine efficiency by about a factor of five saving 75% on coal costs. The Watt steam engine's ability to drive rotary machinery also meant it could be used to drive a factory or mill directly. They were commercially very successful and by 1800 the firm Boulton & Watt had constructed 496 engines, with 164 acting as pumps, 24 serving blast furnaces, and 308 to power mill machinery. Most of the engines generated between 5 to 10 horsepower.
The development of machine tools such as the lathe, planing and shaping machines powered by these engines, enabled all the metal parts of the engines to be easily and accurately cut and in turn made it possible to build larger and more powerful engines.
Until about 1800, the most common pattern of steam engine was the beam engine, which was built within a stone or brick engine-house but around that time various patterns of portable (i.e. readily removable engines, but not on wheels) were developed, such as the table engine.
Richard Trevithick, a Cornish blacksmith, began to use high pressure steam with improved boilers in 1799. This allowed engines to be compact enough to be used on mobile road and rail locomotives and steam boats.


The further development of the steam engine in the early 19th century after the expiration of Watt's patent saw many improvements by a host of inventors and engineers.


Textiles

In the early 18th century, British textile manufacture was based on wool which was processed by individual artisans, doing the spinning and weaving on their own premises. This system is called a cottage industry. Flax and cotton were also used for fine materials, but the processing was difficult because of the pre-processing needed, and thus goods in these materials made only a small proportion of the output.


Use of the spinning wheel and hand loom restricted the production capacity of the industry, but a number of incremental advances increased productivity to the extent that manufactured cotton goods became the dominant British export by the early decades of the 19th century. India was displaced as the premier supplier of cotton goods.
Step by step, individual inventors increased the efficiency of the individual steps of spinning (carding, twisting and spinning, and subsequently rolling) so that the supply of yarn fed a weaving industry that itself was advancing with improvements to shuttles and the loom or 'frame'. The output of an individual labourer increased dramatically, with the effect that these new machines were seen as a threat to employment, and early innovators were attacked and their inventions were destroyed. The inventors often failed to exploit their inventions, and fell on hard times.


To capitalize upon these advances it took a class of entrepreneurs, of which the most famous is Richard Arkwright. He is credited with a list of inventions, but these were actually developed by people such as Thomas Highs and John Kay; Arkwright nurtured the inventors, patented the ideas, financed the initiatives, and protected the machines. He created the cotton mill which brought the production processes together in a factory, and he developed the use of power - first horse power, then water power and finally steam power - which made cotton manufacture a mechanized industry.


Textile Manufacture

In the early 18th century, British textile manufacture was based on wool which was processed by individual artisans, doing the spinning and weaving on their own premises. This system is called a cottage industry. Flax and cotton were also used for fine materials, but the processing was difficult because of the pre-processing needed, and thus goods in these materials made only a small proportion of the output.


Use of the spinning wheel and hand loom restricted the production capacity of the industry, but a number of incremental advances increased productivity to the extent that manufactured cotton goods became the dominant British export by the early decades of the 19th century. India was displaced as the premier supplier of cotton goods.


Step by step, individual inventors increased the efficiency of the individual steps of spinning (carding, twisting and spinning, and subsequently rolling) so that the supply of yarn fed a weaving industry that itself was advancing with improvements to shuttles and the loom or 'frame'. The output of an individual labourer increased dramatically, with the effect that these new machines were seen as a threat to employment, and early innovators were attacked and their inventions were destroyed. The inventors often failed to exploit their inventions, and fell on hard times.


To capitalize upon these advances it took a class of entrepreneurs, of which the most famous is Richard Arkwright. He is credited with a list of inventions, but these were actually developed by people such as Thomas Highs and John Kay; Arkwright nurtured the inventors, patented the ideas, financed the initiatives, and protected the machines. He created the cotton mill which brought the production processes together in a factory, and he developed the use of power - first horse power, then water power and finally steam power - which made cotton manufacture a mechanized industry.


Factories

Over London by Rail Gustave Doré c 1870. Shows the densely populated and polluted environments created in the new industrial cities


Industrialisation also led to the creation of the factory. John Lombe's water-powered silk mill at Derby was operational by 1721. In 1746, an integrated brass mill was working at Warmley near Bristol. Raw material went in at one end, was smelted into brass, and was turned into pans, pins, wire, and other goods. Housing was provided for workers on-site.

Josiah Wedgwood and Matthew Boulton were other prominent early industrialists.


The factory system was largely responsible for the rise of the modern city, as workers migrated into the cities in search of employment in the factories. For much of the 19th century, production was done in small mills, which were typically powered by water and built to serve local needs.
The transition to industrialisation was not wholly smooth. For example, a group of English workers known as Luddites formed to protest against industrialisation and sometimes sabotaged factories.
One of the earliest reformers of factory conditions was Robert Owen.


Machine tools


The Industrial Revolution could not have developed without machine tools, for they enabled manufacturing machines to be made. They have their origins in the tools developed in the 18th century by makers of clocks and watches, and scientific instrument makers to enable them to batch-produce small mechanisms. The mechanical parts of early textile machines were sometimes called 'clock work' due to the metal spindles and gears they incorporated. The manufacture of textile machines drew craftsmen from these trades and is the origin of the modern engineering industry. Machine makers early developed special purpose machines for making parts.


Machines were built by various craftsmen--carpenters made wooden framings, and smiths and turners made metal parts. Because of the difficulty of manipulating metal, and the lack of machine tools, the use of metal was kept to a minimum. Wood framing had the disadvantage of changing dimensions with temperature and humidity, and the various joints tended to rack (work loose) over time. As the Industrial Revolution progressed, machines with metal frames became more common, but required machine tools to make them economically. Before the advent of machine tools metal was worked manually using the basic hand tools of hammers, files, scrapers, saws and chisels. Small metal parts were readily made by this means, but for large machine parts, such as castings for a lathe bed, where components had to slide together, the production of flat surfaces by means of the hammer and chisel followed by filing, scraping and perhaps grinding with emery paste, was very labourious and costly.


Apart from workshop lathes used by craftsmen, the first large machine tool was the cylinder boring machine, used for boring the large-diameter cylinders on early steam engines. They were to be found at all steam-engine manufacturers. The planing machine, the slotting machine and the shaping machine were developed in the first decades of the 19th century. Although the milling machine was invented at this time, it was not developed as a serious workshop tool until during the Second Industrial Revolution.
Military production had a hand in the development of machine tools. Henry Maudslay, who trained a school of machine tool makers early in the 19th century, was employed at the Royal Arsenal, Woolwich, as a young man where he would have seen the large horse-driven wooden machines for cannon boring made and worked by the Verbruggans. He later worked for Joseph Bramah on the production of metal locks, and soon after he began working on his own he was engaged to build the machinery for making ships' pulley blocks for the Royal Navy in the Portsmouth Block Mills. These were all metal, and the first machines for mass production and making components with a degree of interchangeability. The lessons Maudslay learned about the need for stability and precision he adapted to the development of machine tools, and in his workshops he trained a generation of men to build on his work, such as Richard Roberts, Joseph Clement and Joseph Whitworth.


Maudslay made his name for his lathes and precision measurement. James Fox of Derby had a healthy export trade in machine tools for the first third of the century, as did Matthew Murray of Leeds. Roberts made his name as a maker of high-quality machine tools, and as a pioneer of the use of jigs and gauges for precision workshop measurement.


Transportation


At the beginning of the Industrial Revolution, inland transport was by navigable rivers and roads, with coastal vessels employed to move heavy goods by sea. Railways or wagon ways were used for conveying coal to rivers for further shipment, but canals had not yet been constructed. Animals supplied all of the motive power on land, with sails providing the motive power on the sea.
Navigable rivers


All the major rivers were made navigable to a greater or lesser degree. The Severn in particular was used for the movement of goods to the Midlands which had been imported into Bristol from abroad, and the export of goods from centres of production in Shropshire such as iron goods from Coalbrookdale. Transport was by way of Trows - small sailing vessels which could pass the various shallows and bridges in the river. These could navigate the Bristol Channel to the South Wales ports and Somerset ports, such as Bridgwater and even as far as France. Britain's transport was improving which meant that the raw materials came quicker and cheaper and allowed the new ideas to spread quickly.


Coastal sail


Sailing vessels had long been used for moving goods round the British coast. The trade transporting coal to London from Newcastle had begun in medieval times. The major international seaports such as London, Bristol and Liverpool were the means by which raw materials such as cotton might be imported and finished goods exported. Transporting goods onwards within Britain by sea was common during the whole of the Industrial Revolution and only fell away with the growth of the railways at the end of the period.


Canals


Canals began to be built in the late eighteenth century to link the major manufacturing centres in the Midlands and north with seaports and with London, at that time the largest manufacturing centre in the country. Canals were the first technology to allow bulk materials to be easily transported across country. A single canal horse could pull a load dozens of times larger than a cart at a faster pace. By the 1820s, a national network was in existence. Canal construction served as a model for the organisation and methods later used to construct the railways. They were eventually largely superseded as profitable commercial enterprises by the spread of the railways from the 1840s on.
Britain's canal network, together with its surviving mill buildings, is one of the most enduring features of the early Industrial Revolution to be seen in Britain.


Roads


Much of the original British road system was poorly maintained by thousands of local parishes, but from the 1720s (and occasionally earlier) turnpike trusts were set up to charge tolls and maintain some roads. Increasing numbers of main roads were turnpiked from the 1750s to the extent that almost every main road in England and Wales was the responsibility of some turnpike trust. New engineered roads were built by John Metcalf, Thomas Telford and John Macadam. The major turnpikes radiated from London and were the means by which the Royal Mail was able to reach the rest of the country. Heavy goods transport on these roads was by means of slow broad wheeled carts hauled by teams of horses. Lighter goods were conveyed by smaller carts or by teams of pack horses. Stage coaches transported rich people. The less wealthy walked or paid to ride on a carriers cart.


Railways


Wagonways for moving coal in the mining areas had started in the 17th century, and were often associated with canal or river systems for the further movement of coal. These were all horse drawn or relied on gravity, with a stationary steam engine to haul the wagons back to the top of the incline. The first applications of the steam locomotive were on waggon or plate ways (as they were then often called from the cast iron plates used). Horse-drawn public railways did not begin until the early years of the 19th century. Steam-hauled public railways began with the Liverpool and Manchester and Stockton and Darlington Railways of the late 1820s. The construction of major railways connecting the larger cities and towns began in the 1830s but only gained momentum at the very end of the first Industrial Revolution.


After many of the workers had completed the railways, they did not return to their rural lifestyles, but instead remained in the cities, providing additional workers for the factories.
Railways helped England's trade enormously, as they provided a quick, easy method of transport.


Social effects


In terms of social structure, the industrial revolution witnessed the triumph of a middle class of industrialists and businessmen over a landed class of nobility & gentry.
Ordinary working people found increased opportunities for employment in the new mills and factories but these were often under strict working conditions with long hours of labour dominated by a pace set by machines. Harsh working conditions were prevalent long before the industrial revolution took place as well. Pre-industrial society was very static and often cruel-child labor, dirty living conditions and long working hours were just as prevalent before the industrial revolution.


Child labour


Child labour existed before the Industrial Revolution, and in fact dates back to prehistoric times. Politicians tried to limit child labour by law. Factory owners resisted; some felt that they were aiding the poor by giving their children money to buy food to avoid starvation, and others simply welcomed the cheap labour. In 1833, the first law against child labour, the Factory Act of 1833, was passed in England: Children younger than nine were not allowed to work, children were not permitted to work at night and the work day of youth under the age of 18 was limited to twelve hours. Factory inspectors supervised the execution of this law. About ten years later, the employment of children and women in mining was forbidden. These laws decreased the number of child labourers; however child labour remained in Europe up to the 20th century.


Luddites


The rapid industrialisation of the English economy cost many craft workers their jobs. The textile industry in particular industrialized early, and many weavers found themselves suddenly unemployed since they could no longer compete with machines which only required relatively limited (and unskilled) labour to produce more cloth than a single weaver. Many such unemployed workers, weavers and others, turned their animosity towards the machines that had taken their jobs and began destroying factories and machinery. These attackers became known as Luddites, supposedly followers of Ned Ludd, a folklore figure. The first attacks of the Luddite movement began in 1811. The Luddites rapidly gained popularity, and the British government had to take drastic measures to protect industry.
Organization of Labour


Conditions for the working class had been bad for millennia. The industrial revolution, however, concentrated labour into mills, factories and mines and this facilitated the organisation of trade unions to help advance the interests of working people. The power of a union could demand better terms by withdrawing all labour and cause a consequent cessation of production. Employers had to decide between giving in to the union demands at a cost to themselves or suffer the cost of the lost production. Skilled workers were hard to replace and these were the first groups to successfully advance their conditions through this kind of bargaining.


The main method the unions used to effect change was strike action. Strikes were painful events for both sides, the unions and the management. The management was upset because strikes took their precious working force away for a large period of time, and the unions had to deal with riot police and various middle class prejudices that striking workers were the same as criminals, as well as loss of income. The strikes often led to violent and bloody clashes between police and workers. Factory managers usually reluctantly gave in to various demands made by strikers, but the conflict was generally long standing.


In England, the Combination Act forbade workers to form any kind of trade union from 1799 until its repeal in 1824. Even after this, unions were still severely restricted.
In 1842, a General Strike involving cotton workers and colliers and organised through the Chartist movement stopped production across Great Britain.

 


email: John and Chrissie - theartsandcraftshome@gmail.com